74 research outputs found

    Pilot-based estimation of time-varying multipath channels for coherent CDMA receivers

    Full text link

    Deconstructing multiantenna fading channels

    Full text link

    Correlated MIMO Wireless Channels: Capacity, Optimal Signaling, and Asymptotics

    Full text link

    Optimal antenna diversity signaling for wide-band systems utilizing channel side information

    Full text link

    Joint multipath-Doppler diversity in mobile wireless communications

    Full text link

    Optimal Space-Time Transceiver Design for Selective Wireless Broadcast With Channel State Information

    Full text link

    Efficient signaling schemes for wideband space-time wireless channels using channel state information

    Full text link

    Reduced-state MIMO sequence detection with application to EDGE systems

    Full text link

    Deposition of Nb₃Sn Films by Multilayer Sequential Sputtering for SRF Cavity Application

    Get PDF
    Nb3Sn is considered as an alternative of Nb for SRF accelerator cavity application due to its potential to obtain higher quality factors and higher accelerating gradients at a higher operating temperature. Magnetron sputtering is one of the effective techniques that can be used to fabricate Nb3Sn on SRF cavity surface. We report on the surface properties of Nb3Sn films fabricated by sputtering multiple layers of Nb and Sn on sapphire and niobium substrates followed by annealing at 950°C for 3 h. The crystal structure, film microstructure, composition and surface roughness were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The RF performance of the Nb3Sn coated Nb substrates were measured by a surface impedance characterization system. We also report on the design of a multilayer sputter deposition system to coat a single-cell SRF cavity

    Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: effect of cytostatic drugs

    Get PDF
    Breast cancer is the leading cause of cancer deaths among non-smoking women worldwide. At the moment the treatment regime is such that patients receive different chemotherapeutic and/or hormonal treatments dependent on the hormone receptor status, the menopausal status and age. However, in vitro sensitivity testing of tumor biopsies could rationalize and improve the choice of chemo- and hormone therapy. Lab-on-a-Chip devices, using microfluidic techniques, make detailed cellular analysis possible using fewer cells, enabling working with a patients’ own cells and performing chemo- and hormone sensitivity testing in an ex vivo setting. This article describes the development of two microfluidic devices made in poly(dimethylsiloxane) (PDMS) to validate the cell culture properties and analyze the chemosensitivity of MCF-7 cells (estrogen receptor positive human breast cancer cells) in response to the drug staurosporine (SSP). In both cases, cell viability was assessed using the life-stain Calcein-AM (CAAM) and the death dye propidium iodide (PI). MCF-7 cells could be statically cultured for up to 7 days in the microfluidic chip. A 30 min flow with SSP and a subsequent 24 h static incubation in the incubator induced apoptosis in MCF-7 cells, as shown by a disappearance of the aggregate-like morphology, a decrease in CAAM staining and an increase in PI staining. This work provides valuable leads to develop a microfluidic chip to test the chemosensitivity of tumor cells in response to therapeutics and in this way improve cancer treatment towards personalized medicine
    • …
    corecore